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Tetrahedral symmetry in nematic liquid crystals
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(Received 20 December 1994; revised manuscript received 2 March 1995)

By means of symmetry consideration the order parameter U;j. of a tetrahedral nematic liquid
crystal (LC) was derived. In contrast to other nematic LC’s (including uniaxial, biaxial, cubic, and
icosahedral phases) the odd rank (=3) of U;;r permits the phase transition of both the first and
second order from isotropic liquid into tetrahedral nematic LC’s and leads to the appearance of one
of two possible helical structures in the chiral T' phase of this nematic LC. In the framework of the
mean-field approximation the contribution of the orientational part of the LC order parameter to the
polarizability of LC with different symmetries was found and the existence of the second order phase
transition from isotropic liquid into nonchiral tetrahedral nematic LC’s has been predicted. The
Fréedericksz transition in the nonchiral Ty phase was considered: the peculiarities of the bifurcation
tree crucially depended on the direction of the external field with respect to the rotational C3 and
screw C, axes of the unperturbed tetrahedral phase. The untwisting and deviation of the helical
T phase in external fields were discussed. The structure of the disclination core in a tetrahedral
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nematic LC was analyzed.

PACS number(s): 61.30.Gd, 61.30.Jf, 64.70.Md

I. INTRODUCTION

The absence of translational symmetry in the nematic
phase of liquid crystals (LC’s) admits the point symmetry
groups-subgroups of O(3), including the groups forbid-
den in crystalline lattice. The existence of nonuniaxial
nematic phases was predicted [1,2] long before they were
found in the lyotropic mesophase [3]. After that by means
of traditional conoscopic and calorimetric techniques as
well as the NMR and x-ray diffraction there were iden-
tified many nonuniaxial phases in thermotropic nematic
(LC’s): monoclinic [4,5], rhombic [6,7], tetragonal [8] and
cubic [9]. In the paper [10] the properties of the hypo-
thetical icosahedral nematic LC’s were described. In a ly-
otropic LC, rhombohedral, tetragonal, and cubic phases
were also observed [11].

This variety of nematic LC of different point symmetry
groups G initiated development of the theory of physi-
cal phenomena (elasticity, flexoelectricity, hydrodynam-
ics) for a nematic LC of arbitrary symmetry [12-15]. The
theory of linear defects for the most groups G was devel-
oped in the framework of a homotopical approach [16].
The orientational order parameter @, which was used
in the Landau-de Gennes theory of a nematic LC is well
known for middle (w=2) crystallographic point groups
Dy, Dyg, and Dy where w is the rank of the symmet-
ric traceless tensor. For higher symmetries, it was con-
structed in [17-19] for cubic groups (w=4) and in [20-23]
for icosahedral groups (w=6). Tetrahedral nematic LC’s
which correspond to w=3 have not been discussed pre-
viously. One reason for this is that they have not been
observed experimentally until now. Amnother reason is
that the main problems of LC theory were solved in the
1970’s and 1980’s and the gradual decrease of interest to
this branch of condensed matter in the last decade has
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left a number of unresolved questions.

In the theory of condensed matter, the tetrahedral
symmetry was successfully used to describe defects in dis-
ordered phases (metallic glasses, Caspar-Frank phases)
as frustrations of tetrahedral packing [24]. The tetrahe-
dral symmetry of a nematic LC also could be a source
of disclination lines [16]. In contrast to other nematic
LC’s the odd rank of Q3 permits the phase transition
of both the first and second order from isotropic liquid
into tetrahedral nematic. Moreover, the framework of the
mean-field approximation leads only to the second order
phase transition. Another consequence of this is that the
Fréedericksz transition in tetrahedral LC phases depends
on the sign of the applied field (opposite directions of a
field of the same magnitude must give different deviation
planes for the tetrahedral bonds).

The continual theory of tetrahedral nematic LC’s in
the framework of the Ericksen-Leslie theory was dis-
cussed in papers [14,15]. Our objective here is to derive
the order parameter Q3 of a tetrahedral nematic LC and
to develop on its ground the theories of phase transition
from an isotropic liquid into a tetrahedral nematic LC
and orientational Fréedericksz transition. Next, an equi-
librium state of a chiral phase free from the applied fields
and in the presence of such fields will be discussed. The
core of disclination line in those phases will be considered.

II. SYMMETRY CONSIDERATIONS

We begin here with a brief summary of the symme-
try properties of the order parameter Q,, for mesophases
of different point groups G. The tetrahedral order pa-
rameter Q3 will be found to flow naturally from these
considerations. Symmetry classification of LC phases on
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the ground of four-particle correlation functions [25] has
shown that the orientational order parameter Q of the LC
phase can be constructed by means of the components of
the irreducible tensor A, of integer rank w. However the
symmetry of LC point group G could reduce the number
Z of independent scalar invariants I, (G) of tensor Q.,
moreover it could make Z equal to zero, e.g., for Q2

Z[I;(D2p)] = 2, Z[I:(Dss)] =1, Z[I:(On)] =0.

Therefore, the orientational order parameter Q of a LC
for the certain point group G might be naturally chosen
as the first nonvanishing symmetric traceless tensor Q,,
which satisfies the following conditions:

ZILL(G)] #£0, Z[L(G)]=0,v=12,.,w—1

(1)
Now for LC phases not possessing the inversion center
or reflection planes, we should take into account an op-
portunity to construct pseudoscalar invariants by means
of the terms Q,, V@, (chiral phase). Thus it is not dif-
ficult to realize [26] that for subgroups G of the three-
dimensional orthogonal group O(3) a sequence of order
parameters Q. is finite and well defined. In Table I,
go and ¢, u,r,s are the modules of tensor order pa-
rameters Q2, Qs, Q4, Qs, respectively. For construc-
tion of tensors @Q,, we have used M unitary vectors n™:
if w = 2 these vectors are directed along three rota-
tional axes Cj of rectangular parallelepiped; if w 3,
along four rotational axes C3 of tetrahedron; if w = 4,
along three rotational axes C, of tetrahedron or C, of
cube; if w = 6, along 15 rotational axes C, of icosa-
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hedron. Six Greek indices a,3,...,v in the expression
for Q¢ take all noncoinciding values of six Latin indices
%,J,...,t. The expression for Q3 can be obtained by sum-
mation over m of four irreducible tensors of the third
rank AT = u [ n*n]*nl* —1/5 (n* 0k + 1] dik +nF di5)]-

The obtained list of order parameters Q,, exhausts all
possible nematic LC phases. As presumed, it corresponds
to the list of finite subgroups of group SO(3): Cy (k >
1), Dy (k>2),T, O, Y.

III. TETRAHEDRAL NEMATIC PHASE

From all nematic phases (see Table I) the tetrahedral
phase is the only one that has an antisymmetric order
parameter Q3 = U;;r with respect to inversion of vectors
nm

2)

It leads to some peculiarities of the physical properties
of those phases.

Uijk(—n) = —Uijr(n).

A. Phase transition

The phase transition from isotropic liquid into nonchi-
ral phase Ty of a tetrahedral nematic LC can occur as
a transition of both the first or the second order in con-
trast to a weak phase transition of only the first order
into other nematic phases (with the exception of the sec-
ond order phase transition in a tricritical point [2]). It
follows from the fact that the rank of tensor U;jx is odd.
Therefore, one can construct the scalar invariants only

TABLE I. Mesophases: Symmetry groups and orientational order parameters. [Continuing the
tradition that was given rise to by Schouten [27] (Q:-deviator-5, Q3—septor—7, Qs—nonor-9) an
irreducible tensor Qs might be called, in the Latin manner, tridecor according to the number (13)

of its independent components in the general case.]

'wl Symmetry group G and orientational order parameter Q.,,
Isotropic liquid
0 G =S0(3) for chiral liquid, and O(3) for nonchiral liquid
Qo = O-scalar
Vector liquid
1 G = C} for chiral, G = C}, for nonchiral polar, and G = Ckh, Sk for nonchiral axial
@1 = n—unitary vector
Uniaxial nematic LC
G = Dg+1, k > 2 for chiral (cholesteric), G = Dia, D(k+1)n, k > 2 for a nonchiral
Q2 = qo (ninj — 1/3 §;;)—unitary deviator
2 Biaxial nematic LC
G = D for chiral, G = D32}, for nonchiral
Q2 = Z:f gm(n]*n]* — 1/3 §;;)—deviator, E:’f:f Gm =0
Tetrahedral nematic LC
3 G =T for chiral, G = T4 for nonchiral
Qs=u Z:’f_:: n;"n; ng —unitary septor
Cubic nematic LC
4 G = O for chiral, G = Tj, O, for nonchiral
Qs=r [Eff:f nlnl*ngn® — 1/5 (8:j6k + 6:ik6j;1 + 8:10;%)]—unitary nonor
Icosahedral nematic LC
6 G =Y for chiral, G = Y}, for nonchiral
Qs = s [ M= nrnl arn nrn® — 1/7 (521 (Bapdypbyn)]-unitary - --
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of even order: Uiijkji7 (Uiijkﬁ)z, etc. [Restricting
ourselves by considering only the symmetric third rank
tensor V;;, we can build two independent scalars of the
fourth order, (Vijx)*, VijkViipVipqVqij; three independent
scalars of the sixth order, (Vijx)® (Vijr)3ViipVipqVaiss
Viik ViipVipqVars Vrst Viij, etc. If the trace of Vjji is zero,
we have only one independent scalar in every sequence
pointed above.] The density F' of the free energy of the
T4 nematic LC near the phase transition reads

F = ay U;j1Ugji + az (UijrUsji)?
+as (UsjeUssi)® + -+ . (3)

The T4 nematic phase forms a spatially homogeneous dis-
tribution of the tetrahedral bonds.

The phase transition from an isotropic liquid into the
chiral phase T of a tetrahedral nematic LC also can be
of both the first or the second order due to the con-
siderations discussed above for the Ty phase. However,
the appearance of the term U;;,VU;ji in (3), like other
quadratic derivatives which described the elasticity, can
lead to the spatially inhomogeneous ordering of the T
phase as well as in ordinary cholesteric LC (G = Do,).

What kinds of space ordering does a chiral tetrahedral
nematic LC form? This question can be considered in
two versions. The first one is to find a phase diagram
in parametric space [temperature-chirality-applied field
(probably)] for a chiral liquid crystal with order param-
eter Ujjr. Obviously such a diagram would include the
branches of the disorder phase (isotropic liquid) and the
tetrahedral T phase. Besides, one can also suppose some
more phases with an intricate space package similar to
the blue phases in the narrow temperature region be-
tween uniaxially twisted phases and the disorder phase.
This approach assumes an analysis of the full expression
of free energy Fr including the gradient and nongradi-
ent terms (see the realization of such a program for blue
phases in [28]).

The second version is more modest and, therefore,
more restricted — to find a possible space ordering of
the chiral tetrahedral nematic LC by considering only
the gradient part of the free energy Fr. It means that
we are far from the phase transition. This approach natu-
rally does not say anything about the phase environment
around the considered phase. The high symmetry of the
chiral tetrahedral phase in comparison with the ordinary
cholesteric LC shows that one can expect nontrivial so-
lutions already at this stage. In the present paper, we
restrict ourselves to the second version.

Let us choose for convenience another parametrization
of tensor U;j; by means of three unitary vectors e* di-
rected along rotational axes C» of the tetrahedral nematic
LC (Fig. 1)

1 1
n'="—(el+e?+e?), n?= (el —e?—¢°
o ) w? = ),
(4)
1’13 — _}_(_e1+e2_e3) n4 — L(_el __e2+e3)
V3 ’ V3 ’

3
n

FIG. 1. Bonds in a tetrahedral nematic liquid crystal.

and conserving the conditions of the rigidity of tetrahe-
dral bonds

(n',0d) = 4 (89— 1). (5)

The density Fr of the Frank free energy of a deformed
T nematic LC with strong surface anchoring is described
by four nonchiral K; and one chiral v elasticity modules,
according to [14]

3
2Fr = Z [ K1 div? e' + Ky (e, rote’)? + v(et, rote)]
=1

+K3 ((e?,rote')? + (e3,rote?)? + (e!, rote?)?)

+K,4 ((e',rote?)? + (e?,rote)? + (e, rote!)?) .
(6)

Notice that expression (6) is constructed on the grounds
of nine independent pseudoscalars (e*,rote’). By means

of vector identities for the right-hand triade e!, €2, €3

dive’ = (e*,rote’) — (e7,rote*),
(ei X rotei)2 = (e’.,rotek)2 + (ek,rotej)z, i#£j#k

expression (6) can be represented as a quadratic form in
nine-dimensional Euclidean space

3
2Fr = —3K,x? + Z [Kz(:zt, + k)2

=1

Yi 2z

Ks + K K3 — K.
+(K1+—%{) ,2+—3T‘1

+K3 + Ky z?] , (7)

4 T
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where
v i i fval
K= 2K, z; = (e',rote’), y; = dive?,
z; = \/5 (e x rotei)? — div? ef, 22>0. (8)

The necessary conditions of positive definiteness of ex-
pression (7) are

K;+ K, >
4
K3;K,
Ks+ K,

K, >0, Ks+Ky4>0, K; + 0,

K, + >0. (9)
By satisfying these inequalities, the free energy Fr has
an absolute minimum determined by the conditions

dive’ =0, (e' x rote’)? =0, (e’,rote’) +x=0. (10)

It is easy to show that three scalar equations (10) for any
vector e* are equivalent to one vector equation with the
nontrivial solution

rote' + ke' =0. (11)

Thus we should have obtained a pure twist of each vector
e'. Nevertheless, the rigidity conditions (5), which are
valid in every point of three-dimensional space, forbid the
continuous distribution of tetrahedral bonds with equal
periodical twist of each vector e*. This can be proven by
means of vector identities but we will point out a simple
geometric argument. Indeed, a pure twist of two vectors,
e.g., el and e?, gives rise to the twist axis Tws. It has a
constant direction in the space and cannot ceincide with
third vector e® because e? itself is involved in the twist
of the pairs e3,e? and e3,e!. However this construction
is forbidden in the three-dimensional space: e3 as the
vector product of e! and e? must coincide with the twist
axis Tws.

Making use of continuous functions we cannot provide
the absolute minimum of the free energy Fr. In order to
find a continuous distribution of tetrahedral bonds that
minimizes locally (in vicinity of the equilibrium state)
the expression (6) let us consider ei(r) in the class of
functions

N = const, M;(r), rotM; + pu;M; =0 (12)

and put
el = a;N + 6;M;, (N,Mi) =0, N2 = Miz =1. (13)

Before we go on, it must be noticed that only one p
serves for three vectors M;; it could be proven by means
of linear algebra. Now inserting (13) into expression (7)
after simplifications we obtain

K K
2Fr = -2K3kuB; + (Kz - -—%—4) 1By

K3+ K
+—=_ 2%,

: (14)

where

3 3
By= Y p?, Ba= > B},
i=1 =1

One can find these sums by use of the two-parametric

orientation of vectorial triade M;: «a; = (e!,N) =
cosd; , i = 1,2. Then it is easy to show that
By =2, B4=2[1+®(’l91,'l92)], (15)

O(¥1,92) = cos? ¥ cos? ¥, — sin? ¥, cos? %

—sin? ¥, cos® 9, .

Let us introduce the ratio between elasticity modules w =
(K3 + K4)/2K,. Minimizing the expression (14) with
respect to p one can find

K
. = , 16

B =150 —w) 609, 9,) (16)

which leads to the free energy Fr = —Kakp*(91,92).

Now the final step is to find the minimum of the free
energy with respect to the angular variations of ¥, 9.
After a simple algebraic procedure we will get the follow-
ing:

(i) a uniaxial phase with a helical axis along the rota-
tional axis C3 of chiral tetrahedral nematic [Fig. 2(a)]

. 3k 3K2K,2
OSW<17 p‘cs_:'m’ Fca=—‘—‘-2+w‘a
9} = 9% = arctan (£Vv/2) ; (17)

(ii) a uniaxial phase with a helical axis along the rota-
tional axis C; of chiral tetrahedral nematic [Fig. 2(b)]

A

@Aiék s
Lok

AASA Mgy

a) b)

P—p—p—p

FIG. 2. Uniaxial chiral phases of a tetrahedral nematic LC:
(a) Cs helix, (b) C2 helix.
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w>1, pg, =k, Fc, = —Kk? 97 =0, 93 =7/2.

(18)

As follows from formulas (17) and (18), the pitch h =
2w /p* of a helical tetrahedral structure depends on the
anisotropy of the LC elasticity only in case (i).

B. Polarization

A conclusion about the order of the phase transition
could also be drawn in the framework of the mean-field
approximation in statistical physics (see a modified vari-
ant of the Maier-Saupe theory in the Sec. IIIC). First
of all, it is necessary to determine an angular order pa-
rameter for a tetrahedral nematic LC similarly as (cosf)
for a paramagnetic gas or as (cos20) — 1/3 for a uniaxial
nematic LC [29]. In the present section we will restrict
ourselves to the determination of such an angular pa-
rameter () considering a polarization of a tetrahedral
nematic LC.

Let us put a tetrahedral nematic LC in electric field E.
The density of energy of their interaction is

4
2W = —U;jn B;E; B = —u Z (n™, E)*. (19)

m=1

Then, in e’ basis we find

4 1 2 3
W= - u(eE) (¢, E) (¢, E). (20)

The one-particle distribution function of the tetrahedral
bonds is p(U) = aexp (—W/kT), where a is the normal-
izing constant. Going over to the spherical coordinates
we obtain

p(U) = aexp( 2 E3 cos 0 sin? 051n2<p) (21)

3 kT

The value (Q) = (cos #sin® #sin2p) can be taken as the
angular order parameter that goes to zero in the isotropic
phase. Applying the general definition of ()

L4 27
Q) = /0 /0 Q0, p)p(U)sind dd dp,  (22)

let us present a final result omitting the details of the
calculation procedure,

1
@ =1 [/ To(ve(1 — 22)) da:] . (@23)
0
where v = \/“ 1 E3 and Io(x) is a modified Bessel func-
tion. It is easy to show that in the weak field (y < 1)

4 8 U a3

Q)= ﬁ’)’z "“—105\/§ﬁ

(24)

Defining a polarization P of the nematic phase by the

formula

W = —(P,E) (25)
and assuming that the contribution to W = (W) from
every tetrahedral bond is given by (20) we will find

W = _2 u B3(Q)c,

V3

where c is the concentration of the tetrahedral bonds in
the nematic phase. After inserting (24) into the last for-
mula and comparing it with (25) we finally obtain

16 u?

P = p(B)E, ps(B)= 312 o7

cE*, (26)

where p3 is the polarizability of the tetrahedral nematic
LC.

It must be mentioned that the expression (26) could
be simply generalized for any nematic phase (Table I): if
an order parameter is a tensor Q,, of rank w with module
by then the polarizability p,, of such a mesophase in the
weak electric field (b, E* < kT) is

Puw X @ c E*w-1)
kT

In conclusion, we will make a remark: the last expres-
sion describes a contribution of an anisotropic part of
the order parameter to the polarization of the nematic
phase. There is really always an isotropic part of polar-
izability po as a result of the induced dipole moment pyE.
By analyzing the nonlinear contribution E2(*~1) to the
polarizability of the nematic phase, one can determine a
symmetry class w of liquid crystals according to Table I.

C. Maier-Saupe theory of tetrahedral nematic LC’s

Consider now the phase transition from an isotropic
liquid into a nonchiral phase T, of the tetrahedral ne-
matic LC in the framework of the mean-field approxima-
tion. Our approach is based on the Maier-Saupe theory
for the uniaxial nematic LC’s [29] with natural differ-
ences.

In accordance with this approximation a one-particle
distribution function of the tetrahedral bonds is p(U;) =
aexp (—V;/kT), where V; is the orientational energy of
the ith molecule in the mean molecular field (). Fol-
lowing the Maier-Saupe theory, we shall put V; o ().
Similarly, to the derivation of the orientational energy of
the tetrahedral nematic LC’s interaction with the electric
field (19) and (20) we can obtain

Vi = -V (Q)cosb; sin? 6; sin 2¢; , (27)

where V is an energetic constant which does not depend
on temperature 7. The spherical coordinates 6;, ¢; de-
scribe the ¢th molecule position in the mean molecular
field. It is natural to introduce a function

Q; = Q(6;, ;) = cosb;sin? §; sin 2¢; (28)
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in order to construct a one-particle angular order pa-
rameter (€2;) which goes to zero in the isotropic phase.
According to the definition we have

Ed 2n
() = / / Q(6:, 3) p(Us) sin 6; d0; de; , (29)
0 0

where the one-particle distribution function p(U;) can be
written as

p(Ui) = aexp [ i{kz;,—v Q(6;, i) :l . (30)

Now we are able to make the last step in the framework
of the mean-field approximation and to postulate a self-
consistent equation

() = (Q) . (31)

Inserting (28)—(30) into Eq. (31) after simple calculations
we obtain

kT d

71} = %[ In Z(’U) ],

Z() = /2 Iy(vsintcos?t) cost dt (32)
0

where v = = (Q). This nonlinear equation determines
an implicit temperature dependence of the order param-
eter (Q)(T) as well as the temperature T* of the phase
transition where (Q)(T) =0if T > T*.

Let us study analytically the behavior of (Q)(T') in the
vicinity of the phase transition ({(2) < 1). Using a power
expansion for the modified Bessel function Io(z) and an
integral representation for the 8 function B(l,n) [30] one
can find a statistical integral Z(v)

oo
b
o2

ﬁ ’
=0

ol [(20 — 1)11)?

N TS T

Z(v) = (33)

where the first five coefficients b; are

2 _ _
bo =1, b1=ﬁg%1.90x10 2 by 2266 x107%,
bs 275 x107%, by =223 x1078.

The logarithm of Z(v) can also be expanded in powers
of v by means of a cumulantial expansion [31]

oo c
nZw) =Y I v (34)

=1
where the so-called cumulants c; are related to b; in a

regular manner

c1 = bl, Cy = bz — b%, c3 = b3 — 3b1b2 + Zb:{,
Cyq = b4 - 4blb3 - 3bg + 12b¥b2 - 61)‘11 y "

The first four of them are

€1 =190 x 1072, ¢,
c3=1.35%x107%, ¢4

—0.96 x 1074,
—2.86 x 1078,

IR 1R

Finally, Eq. (32) gives

T
1 — :IT*: dl’U2 - d2U4 + d3’U6—-, e

UZT—T‘m) ) (35)

dy = %2~ 050 x 1072, dy = 3~ 0.34x 1074,
c1 2¢;
ds = — <2 = 0.25x 107°,
601

where T* = 201% = ﬁg % is a temperature of the second
order phase transition. In the vicinity of T* we immedi-
ately obtain from (35)

@) = 2V s A—70)}, T<T
07 TET*

The numerical solution (Fig. 3) of the nonlinear equation
(32) also confirms the conclusion about the order of the
phase transition with ordinary dependence on the order
parameter (Q) o< vVT* —T.

For the case T'— 0 we have

2
() > —= = 0.385,

3v3

that also is in good agreement with numerical results
(Fig. 3). This value comes from the maximization of
Q(6;, ;) with respect to the angular coordinates 6;, ¢;

o 1 ~ (o]
pi = 45°, 6; = arccos (\/E) 54.7° .

Let us finish this section with a short discussion of the
influence of the thermal fluctuations of nematic bonds on
the critical behavior of the nonchiral tetrahedral nematic
LC in the vicinity of the phase transition into isotropic
liquid. This question is obviously out of the scope of the
mean-field approximation.

As was shown in [32] for the phase transition from a
nonchiral uniaxial nematic LC into an isotropic liquid in
the one-constant approximation we can operate with a
model of three-component spins of the fixed length in-
stead of the second rank traceless tensor Q;; if the fluc-
tuations of the module g of tensor order parameter Q;;
would have been neglected. In the framework of the
above-mentioned approximations in [33], this approach
was extended to the phase transition from a nonchiral
biaxial nematic LC into an isotropic liquid: one can op-
erate with a model of five-component spins of the fixed
length instead of the second rank traceless tensor Q;;.
Following this approach, in our case we will use a model
of seven-component spins of the fixed length (Appendix)
instead of the third rank traceless tensor Ujjx. In this
spin representation in accordance with power expansion
(3) we have an isotropic model that belongs to the uni-
versality class d = 3, n = 7. This model has only one
stable isotropic fixed point [34], where the second order
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\ FIG. 3. Second order phase transition

from isotropic liquid to the nonchiral tetra-

\ hedral nematic LC.

T/T*

phase transition is valid at T' = T*. It is presumed here
that the coefficient a; from the expansion (3) is defined
as a; = a%(T — T*). The critical indices in the small
vicinity 6T of this point T* are determined by the € ex-
pansion which in our case gives for the order parameter
up to the power €2

(Q) < (T* = T)?, B=0.42.

The width 67 of the critical temperature range is deter-
mined by the Ginzburg criterion.

D. Fréedericksz transition

In this chapter we will discuss the behavior of the
nonchiral tetrahedral nematic LC contained in an infi-
nite plane-parallel slab in electric field E. It presumes
a strong anchoring of nematic bonds at the boundaries;
an electric field is applied perpendicular to the boundary
plane.

The free energy of the deformed T,; nematic LC in the
E field calculated per unit area of the surface of the plane-
parallel LC layer is described by the functional

1 (L
S — wW)d 36
7= 5z [ P+ W)z, (36)
where W was defined in (20), Fr, is the density of the
Frank free energy of the deformed Ty nematic LC [14]

3
2Fr, = Y [ K div? € + K;(e?, rote’)?
=1

+ K3 (e x rote*)? ] (37)

and 2L is the thickness of the nematic layer. The bound-
ary conditions for strong anchoring are

e(xL) = e} . (38)

We will use the approach developed for the orthorhom-

bic nematic LC in [35] for the variational problem with
the functional J, the holonomic relationship (5), and
boundary conditions (38). This approach makes it possi-
ble to identify the nature of the functions that minimize
J and satisfy the conditions (5) and (38). This is equiv-
alent to the Ritz variational method. It gives rise to a
certain algebraic polynomial with several variables which
can be simply analyzed.

The high symmetry of the tetrahedral group leads to
the variety of initial unperturbed orientations of nematic
bonds with respect to the boundary. Nevertheless, this
variety can be shared in the following three different parts
by symmetry considerations:

(i) E is not parallel to any rotational axis of the nonchi-
ral tetrahedral nematic LC, i.e., E is parallel to the prim-
itive rotational axis Cy;

(ii) E is parallel to the screw axis C; of the nonchiral
tetrahedral nematic LC;

(iii) E is parallel to the rotational axis C3 of the nonchi-
ral tetrahedral nematic LC.

Indeed, let us consider a small deviation of tetrahe-
dral bonds n’ from their unperturbed positions nj. The
deviations of the e’ triade in the neighborhood of the
unperturbed e}, triade according to (4) are also small.
Going over to the spherical coordinate system (Fig. 4),
introducing the angular coordinates 7;,%z = 1, 3 for vector
el, 7;,i = 2,4 for vector e?, and using the orthogonality
relationship of these vectors we get

(e',e®) = sinT; sin7y + cos Ty cos T2 sin(73 +74) =0 .

We represent the transformations rules of the unper-
turbed e}, triade as

(el’eZ,eB)z (eé7e(2)7eg)A7

where the three-dimensional operator A(‘rl, Ta,73) is
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COS Ty COST3 COST2SinTy4 C€OSTySin Ty sinTs — sin Ty COS T3 COS T4

A=

sin 7 sin 7o

The angular coordinates 7;(z) have the boundary condi-
tions 7;(+L) = 0. Obviously, we have only three inde-
pendent angular coordinates 7;(z) that follow from the
orthogonality relation for vectors e!, e?. Expanding this
relation as a series in 7; we obtain

T3+ Ta+TiT2 [1+ %(Tf+722)+ Z Pp(r1,72) | = 0,
k=2

where P,p(71,72) is a homogeneous polynomial of the
2kth degree in 7; and 7. Let us now symmetrize the
expressions for 73 and 74 by introducing an additional
relation 73 — 74 = 2 75 , then

T3a = * T5 — %'rl'rz [1-{— %(T12+T22)

5 pam]

k=2

In order to find out whether the Fréedericksz transition
with zero threshold E* takes place, it is not necessary to
consider the full functional J: according to the Landau
theory of phase transition, if the expansion of Fr, + W in
the power series in 7; and d7;/dz includes nonvanishing
linear terms 7; or d7;/dz, then the transition occurs in
any weak electric field, i.e., the transition threshold is
zero (E*=0). As was shown in [35] for a wide class of
functionals, the expansion of Fr, (37) does not include
linear terms. These terms originate only from W under
certain conditions imposed on E with respect to the e
triade. Let us find these conditions. It is easy to show
that W can be written in the form

COS 71 SINT3 COS Ty COST4 SIN Ty COSToSinT4 — COS Ty Sin T COS T3
€OS Ty €OS T3 cos(T3 + T4)

(39)

3 3

4
_%uz

=1 j=1

3
W= S EPEJERATAZAY,  (40)
k=1

where E? = (e{,E) . Using the linear part of the orthog-
onality relationship we will find the linear part Wy of W
with respect to 7;

VB~ mRI(ER)? — (B9

4u
+E}((E3)? — (ER)®|2 + E3[(E3)*
—(EY)?)7s . (41)

Then we immediately obtain E directions that preserve
the Fréedericksz transition with nonzero threshold E*:
(ii) E is parallel to the screw axis Cjy,

E)=E)=0or E)=EJ=0 or Eg=E3=0;
(iii) E is parallel to the rotational axis Cs,
E}=E}=Ej.

In any other cases (i) the Fréedericksz transition
evolves continuously (E*=0).

1. E|| C,

Consider the case where E = Ee}. From (39) and (40)
one can obtain up to the fourth power with respect to 7;

8
2W = TguEs{Tsz—ngTz (T2 +72]}.
The expression for Fr, up to the fourth power with re-
spect to d7;/dz and 7; also can be written in the following
way:

(42)

dri\? dr2\? drs\? d d d
2FTd=(K1+K3)[(£) + (i—z) ] +2K, (11775) + 2Ky [Tl-dfzi = Tzﬁ]

d’T'l d’Tz
+(2K1+2K3—7K2) 7'17'22;3‘;—
drs z 2 2

+2 (K3 — K3) dz [7r + 73]

Now we have obtained the well-known density of func-
tional Jg, that differs from that one considered for an
orthorhombic nematic LC [35] only by the nondiagonal-
ized quadratic terms 7;72. By means of canonical trans-

9 2 d’l‘z 2 2 d’l’1 2
TR mK () Tl

(43)

formation and minimizing procedure developed in [35] for
similar functionals, like J,, we will obtain after integra-
tion of (36) the following expression for the polynomial

J(f., (C, §s 7]):
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v/

FIG. 4. A perturbed molecular “hedgehog.”

2Jg, = 1C% + 9267 + gsn® + 294(€n + gs (€2

+96€2n% + gn?C® + 1 (9C* + 9o€* + g1on?) .
(44)

In the last expression, ( and £ are the amplitudes of the
first modes in the cos Fourier expansion for angular devi-
ations 7, + 7 and 7y, — 7 of tetrahedral axis C4 from the
E direction correspondingly. 7 is the similar measure for
rotation angle 75 around the Cy4 axis. The coefficients g;
can be found in the usual way [35]. We will present the
first three of them

91,2 = (K1 + K3)¢® £ V3¢E®, g3 = 2Kyq*, (45)

where ¢ = ©/2L is the wave number, € = 4u/3 is an
electrical “permittivity” of the tetrahedral nematic LC.
The other coefficients g;(¢*K;,eE3), i > 4 are continu-
ous functions, also gg > 0,94 > 0, gi10 > O that follow
from the thermodynamical stability condition.

The analysis of Jg, (¢,€,n) allows one to find the sta-
tionary states separated by the bifurcation points EY,
where the structural transitions occur. The stationary
states are determined by the set of critical points, while
the Hessian matrix ((8%2J,)) defines the regions of para-
metric space {(,&,n, E} where the stationary states are
stable. The critical points (.,&«, 7« of the polynomial
(44) are given by the following system of equations:

8cJ = 8ed = 8y J = 0, (46)

which has the following solutions that are locally stable
in the relevant parts of the parametric space:
(0) trivial

C*:*:n*:ﬂ, (47)

9120, g2>0, g3>0: = |E|<E], (48)

(1a) primary

C*= _&7 6*:77*—_—07 (49)
gs

g1 <0, ggs >0, g29s > g195, g3gs = giJs,
(9298 — 9195)(93gs — 9196) + 919893 > 0

= E}<E<E;, (50)

(1b) primary

g
b= ,/-2, G=m=0, (51)
go

g2 <0, go >0, gige > g29s5, g3gs = 9297,
(9190 — 9295)(g3ge — 9297) + g2geg3 >0

= —E; <E<-E7, (52)
(2) secondary

G #0, & #0, n. #0, (53)
|E| > E3, (54)

where £FE7 and +F3 are the primary and secondary bi-
furcation points accordingly,

Bi= 3 —=—24%. (55)

The opposite signs of the fields +E}, and —E}, mean
that they are oppositely directed. The expression for E3
cannot be represented in analytic form.

The nonzero solutions are the points of the intersection
of three second-order surfaces in the space {(Z,¢£2%,n%}.
The analytic form of such solutions is cumbersome. One
can use the symmetry considerations [35] to show that
there may be four such solutions. There can also be a
situation where there are no solutions at all. The stability
of the structures is governed by the positive definiteness
of the corresponding Hessian matrix.

This alternation pattern of critical points of the poly-
nomial (44) which are locally stable in different regions
of the parametric space is typical for the bifurcation tree
in a three-dimensional space with a trivial stem (47) and
with primary (49), (51), and secondary (53) bifurcation
branches (Fig. 5). At the primary bifurcation points
+EY the trivial state (47) becomes unstable via a second
order structural transition. At the points +E3 of the
secondary bifurcation the primary states (49) and (51)
lose their stability via structural transitions of the first
or the second order. From the physical standpoint ev-
ery bifurcation gives rise to a rotation of the tetrahedral
“hedgehog” around one of the screw axes Cy. It might be
emphasized that there is a difference between this figure
and the one corresponding to the Fréedericksz transition
in the orthorhombic nematic LC [35]. Of course, this
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FIG. 5. Bifurcation tree of the Fréedericksz transition in
tetrahedral nematic (E || C4): £E} and +FE3 are the primary
and the secondary bifurcation points, respectively.

difference is concerned with the unparity property (2) of
the order parameter Ujjx. In this case, the Fréedericksz
transition in the tetrahedral nematic LC occurs if E is
both parallel and antiparallel to the Cy axis that also dis-
tinguishes the tetrahedral phase from orthorhombic and
cubic [36] phases.

2. E| Cs

We have here E = (e! + e? + €3)E/+/3 and this case
can be analyzed in the same way as the preceding one.
Not going into analytical details, let us consider the cor-
responding polynomial of free energy Jc,((,&,n) [let us
note that the expressions for polynomials (44) and (56)
can be obtained in a more simple way by use of the in-
tegrity basis of invariant polynomial for the point sym-
metry groups Ca, and Cs,]

2Jc, = f1(C? + €2) + fon? + f3((C* — 3 €?) + fan*
+fsm? (¢ + €%) + fo(CP + €7)2. (56)

Here ¢ and £ are the amplitudes of the first modes in
the cos Fourier expansion for angular deviations of the
tetrahedral axis C3 from the E direction, n is a similar
angular measure for the rotation of tetrahedral bonds

around the Cj3 axis. The first two coefficients f; are

fi=31(K; + K +2K3)¢* — £ eE?,
f2=2 2Kz + K3)q” . (57)

The other coefficients f;(¢?K;,eE?), i > 3 are continu-
ous functions, also f4 > 0, f¢ > 0 which follows from
the thermodynamical stability condition. This kind of
potential is also well known [37]. It can be easily shown
that (56) gives one primary bifurcation point E}

Il

B = §/3K1+K2 +2K; 2

= q (58)

and one secondary bifurcation point EJ.

Since Eq. (56) contains cubic terms, the structural
transition in point E7T is of the first order that implies
the presence of hysteresis. It is more convenient to an-
alyze the critical points of the polynomial (56) in polar
coordinates p and @ which are defined by the relations
¢ = pcosyp, € = psiny. The sequence of the stable
states is as follows:

(0) trivial
px = nw = 0,1, is arbitrary , (59)
£120, f220 : > E<E], (60)

(1) primary
po = 3158 i(é)z_lﬁ

8 fe 64 \ fe 2 fs’
n =0, ¢*=mg,m21, (61)
. 9 f2.
f1 < 0isstable, 0 < f; < — == is metastable ,
32 fe

Ei <E<E;, (62)

(2) secondary

_ 3|fs|fa £ VIf2fZ —4A:1A,
P 24, ’
Az — 3| f3]ps ™
2 _ 22 7 ISP =m= >1 63
71* 2f4A1 ’ 1/}* m3? m = ( )

Ay =4fsfe— f2#0, Ao = fifs— fofs,
E>E;. (64)

The expression for EJ is defined by the real solution of
the equation Ay = 3|f3|ps. There are some more degen-
erated cases (A; = 0) which can lead to the change of
the transition order in the secondary bifurcation point
or even to its vanishing. The details of the whole pro-
cedure will not be discussed here. Unlike the preceding
case (E || C4), the Fréedericksz transition occurs now
only when E has the same direction as the C5 axis (Fig.
6).
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FIG. 6. Bifurcation tree of the Fréedericksz transition in
tetrahedral nematic (E || Cs): Ej and E; are the primary
and the secondary bifurcation points. A hysteresis is shown
in the vicinity of E7.

E. Behavior of the chiral tetrahedral phase
in an external field

Consider the chiral tetrahedral T phase in electric field
E. Now we have another scenario: the inhomogeneous
spatial distribution of tetrahedral bonds (Fig. 2) makes
the distortion of unperturbed T phase valid at any weak
field E. But there arises another question — does the
field untwist the helices of chiral tetrahedral bonds as
well as it does with the uniaxial helix in the case of the
cholesteric LC (G = Dy)?

In order to give an answer to this question let us con-
sider the behavior of the unbounded T, phase in an elec-
tric field. It is easy to show that all tetrahedral bonds
will be oriented homogeneously in such a way that the
rotational axis C3 of the nonchiral tetrahedral phase will
coincide with the E direction. Naturally, the possible di-
rection of the C3 axis — along the field or the opposite
direction — depends on the sign of u. Returning to the
chiral tetrahedral nematic LC in an electric field, it is
now clear that we have two mechanisms of the field in-
fluence on the uniaxial helices of the T phase: untwisting
of helices and reorientation of their axes in the space.

1. Untwisting of the C; helix

The expression for the free energy J; contains a twist
angle ¢ of the tetrahedral bonds around the helical axis
C in a plane perpendicular to this axis and a deviation
angle x between the helical axis and the E field

_ KZ L d¢ * 2 * 2
Jp = A A [(dz #cz) (#cz)

—1 052 cosx sin®x sin 2¢] dz . (65)

Here the helical axis is directed along the z axis, ug,
is determined in (18), an electric coherence length o5 is
given by

1 K,
2o =, 66
O3 2\/3 5E3 ( )

An equilibrium state that minimizes J> is obtained
from a solution of the Euler- Lagrange equations derived
from (65) with respect to ¢ and ¥,

d?¢ 1 -2 s 2
5z + 3 05 “cosx sin®x cos2¢ =0, (67)

siny (3cos?x —1)=0. (68)

The last equation gives the deviation angle x3 which min-
imizes the free energy and does not depend on the twist
angle ¢. One can show that the minimum of J; corre-
sponds to x4 = arctan (£+/2), where “4” or “—” signs
are determined by the sign of e.

Equation (67) is a time-independent sine Gordon equa-
tion. Inserting the value of x3 into (67) we will obtain a
periodic solution

¢(z,k) = _;_r + arcsin [sn ( %ﬁ (/;4—;) } (69)

with the pitch hs of the perturbed helical structure
ha = 2v/108 o5 k K(k) . (70)

Here sn(z,k) is the Jacobi elliptic function, K (k) denotes
the complete elliptic integral of the first kind of modulus
k, where the constant k is determined from the following
equation with the complete elliptic integral of the second

kind E(k) as:

) 27
pe, k oz 4 T (71)

™

E(k) = 3

Using the two last equations one can show that the helical
pitch h, increases with an increase of F and diverges as
h2(E) o< —hY In(E, — E) in the vicinity of threshold
field E;p which is given by

Eyn = (T—‘/gn) VESE (72)

@

4 €
Thus, the chiral-nonchiral tetrahedral nematic phase

transition is shown to occur continuously at E = Ej,.
The free energy J3 is given by expression

Jro 2 Ko (1 1
2= Jar ol \2 K2
_ —K2I€2 , E— 0
—(%)2 Kzl‘éz ) FE — Eth .

This obviously confirms the energetic preference of helix
untwisting.
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2. Deviation of the Cs helix

In contrast to the case considered above the behav-
ior of C3 helices in an external field does not lead to
the untwisting of the helical structure at all. Indeed, let
us write a free energy J3 of this chiral LC choosing for
convenience an appropriate orthonormalized coordinate
system that is based on the three unitary vectors N*

1
Nl=n!, N2:——-(3n2+n1),

2v2

N3 = % \/g (2n® + n? +n?). (73)

Using the notations for the twist angle ¢ of the tetrahe-
dral bonds around helical axis C; and a deviation angle
X between the helical axis the and E field, we will obtain
the expression for J3

K2 L d¢ * 2 *
J3=T/0 [(E_NCS — K be,

+1 o5?sin® x sin3¢ + ®(x) ] dz (74)
4v2
®(x) = %_ 032 (3cosx —5cos® x) .

The helical axis coincides with the z axis, ug, is deter-
mined in (17), and the electric coherence length o3 is
given by

o2=3v2 ;% . (75)

The Euler-Lagrange equations for functional (74) read

d2
—¢ — E0'_251113)( cos3¢p =0, 76
dz? 43

sin x ( 5v/2cos® x + 32 sin2x sin3¢ —v2)=0. (77)

The last equation has only one solution, sin x§ = 0, which
does not depend on the twist angle ¢: x% = 0 corresponds
toe > 0 and x5 = m corresponds to ¢ < 0. It means
that the helical axis deviates in such a way that E is
directed along it. As follows from (76), the C3 helical
structure does not untwist. The free energy JJ is

* * 8 3
J3 = —Kakpg, — g €E°

i.e., the elastic energy of unperturbed Cj3 helices and the
electrostatic energy of the nonchiral tetrahedral nematic
phase in the E field contribute to J; additively.

3. Chiral tetrahedral phase in crossed fields

As we have seen in the preceding sections, there is
a continuous degeneracy of C; helical axes at the conic

surface around the direction of the external field. We can
remove this degeneracy in the chiral T phase applying
two crossed external fields of different nature — electric
E and magnetic H fields. One can expect as well that
the crossed external fields will give rise to the deviations
of the C3 helical structure. The calculation is similar to
the previous one, and we will give a brief list of derived
expressions and short comments on them.

C, heliz. Consider the C; helical structure put in
crossed E and H fields, (E,H) = EH coss. The free
energy Jag of this system is

Ko ["T(dé_ .\ _ (.
J2g = “5/0 [ (;E - l‘cz) - (1,)?
—1 G1sin2¢ — 1 Gacos 2¢] dz , (78)

G, = U;E2 cos xg sin? XE+U;}§ cos xg sin®xg cos2p,

Gy = 02_5 cos xg sin xg sin2p .

As before, the helical axis here coincides with the z axis;
xE and x g are the deviation angles between this axis and
the directions of E and H, respectively, o is a projection
of the angle ¢ on the plane perpendicular to the helical
axis. There exists a relation

cosg = cosxg cosxyg + sinxg sinxmg cosg, (79)

where o2 is given by (66) and oa5 is defined as 02y =
oy (E/H)3. (Strictly speaking, it would be worthwhile
introducing two separate interaction constants of the
tetrahedral phase with electric and magnetic fields: in-
stead of e, we would have two permittivities, eg and ey,
for each field. It would lead to the renormalization of
025, 02 and would not change the following consider-
ations.) The Euler-Lagrange equations that describe an
equilibrium state of this system read

2
%zg + 3 G1 cos2¢ — 3 G, sin2¢ =0, (80)

x5 (Gl + G3) = 0y, (G1 +G3) =0. (81)

Two equations (81) give the deviation angles x3g, X35
which minimize the free energy J>g and do not depend on
the twist angle ¢. Inserting the expressions for G;, G2, o
in (81) and omitting the simple algebraic calculations we
obtain

‘72_E'2 Ccos XE (3c0s2 xe — 1)

+ 0,4 cosxm (3cos?xg —1) =0, (82)

COSZXE — 2 cos§ COSXE COSXH + cos? XH = %sinzg.

(83)
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These equations generalize Eq. (68) in the case of non-
collinear fields and they are reduced to it by setting ¢ = 0.
In the (cos x g, cos xu) plane, Egs. (82) and (83) describe
two algebraic curves of the third and second order, re-
spectively, which at least have one pair of intersection
points. [In the polar coordinate system, curve (82) passes
through the origin of coordinates and has two opposite
asymptotic directions where it goes to infinity. Curve
(83) is a simple ellipse.] Moreover, under certain condi-
tions for the values of E, H,¢ the curves will have two
or three pairs of intersection points. This means that
we could deal with the first order transition between C,
helical structures during their evolution caused by the
applied E and H fields. Thus we have at least one real
solution X3z, X5y Which depends on the values E, H
of applied fields. The orientation of the C; helical axis
deviates with the increase of F and H.

Simultaneously, this helical structure will untwist ac-
cording to the time-independent sine Gordon equation
(80). A periodic solution of it can be obtained in terms
of the Jacobi elliptic function. The pitch hag of the per-
turbed helical structure is

hog = 4 (G2, + G2,) % k K(k) , 84
Q@ 1x 2%

where G, = G; (X3g,X5g)- The following expression
gives the values of threshold fields E;p, H;p, in the implicit
form:

4
Gl + G = (5%)

where the C; helix is fully untwisted. In the (Eip, Hip)
plane, the last equation describes a continuous algebraic
curve.

C3 helizx.
crossed E and H fields which are not collinear.
energy Jsg of this system is

K (Pl rde . \? .
Jag = =2 [(—-#03> — K pe,

Consider the C3 helical structure in the
A free

L Jo dz

+% (G3sin3¢ + G4cos3¢) + ®(xg) + ®(xH) |dz,

(85)
G3 = aé‘g sin® xg + a;lf, sin® xg cos3p,

Gy = 03_5 sin® xg sin3p,

where o3 is given by (75), 02y = 025 (E/H)3, and the
function ®(x) is defined in (74). The Euler-Lagrange
equations read

4 1/G%+ G2 8,,®(xE) + sin3¢ 8,,(G2+G2) =0,
(86)
44/G%+ G20y, P(xm) + sin3¢ 0y, (G2+G3) =0.

They have only one trivial solution G3., G4, which does
not depend on ¢

Gsx = G4 =0. (87)
These equations generalize Eq. (77) for the case of
crossed fields. In the crossed fields, the C3 helical struc-
ture will not untwist. However, the deviation of the he-
lical axis depends now on the magnitudes of the fields F
and H. Equations (87) determine the equilibrium direc-
tion x3g, X3y of the C3 helical axis as a function of the
independent variables FE, H, coss. If the directions of
the external fields do not coincide with the helical axis,
there are four different orientations determined by an al-

gebraic system corresponding to four different values of
o= 0% 2m

cos Xg cosxXyg + sinxg sinxmg cosp = cosg, (88)

a::bg sin®xg + 0'3_13 sin® xm cos30=0.

The competition between these four solutions leads to
the selection of the equilibrium state, corresponding to
the minimum of the sum ®(xg) + ®(x#). The first or-
der transitions between different helical orientations are
expected with the variation of the applied fields.

F. Defects in the tetrahedral nematic LC

The current topological dg-dimensional defect classifi-
cation [38] labels singularities in three-dimensional space
by the conjugacy classes of the absolute homotopy groups
Tdg (V), where dg = 2 — dg. The degeneracy space V
of the order parameter @ is defined as a coset space
G/P , G is the unbroken symmetry group and P is the
subgroup of (preserved) symmetry of the phase. The de-
fect that corresponds to the trivial conjugacy class {1}
can be smoothed out by a local order-parameter fluctua-
tion and, therefore, is denoted as topologically unstable.

Using general properties of the symmetry groups
[SO(3) is a connected component of O(3), T is a con-
nected component of T; and does not contain continuous
rotation around an axis] it is easy to show the absence of
the stable point defects (dg = 0) and the surface defects
(de = 2) in chiral and nonchiral tetrahedral nematic LC’s

m0(0(3)/Ta) = mo(SO(3)/T) = {1},

72(0(3)/Ta) = m2(SO(3)/T) = {1} . (89)

Line defects (dg = 1) were studied in [16] where an-
other mechanism of the topological instability of these de-
fects was pointed out in addition to the above-mentioned
relazation process : one defect can be transformed into
the other via catalyzation by the third defect line. This
classification used for tetrahedral phase leads [16] to sta-
ble disclinations which are directed along a threefold ro-
tational axis of tetrahedral phase. This fact is reflected
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in the existence of a nontrivial fundamental group
7. (0(3)/Ty) = 7 (SO(3)/T) =T, (90)

where T is a binary group of T with seven conjugacy
classes assembled into three subsets

{C()»C_vﬂa02} ) {03’03} ’ {C;,ég}

Let us build the distribution of nonchiral tetrahedral
bonds around the disclination line L of the above men-
tioned type [Figs. 7(a)—(c)] by means of the Volterra
process for the partially ordered fluids [39]. On this line,
parallell to the threefold rotational axis Cjs,, the direc-
tions of the tetrahedral bonds are undefined. However,
we will try to consider this core of defect by the approach
developed in [40] for the disclination core in a uniaxial
nematic LC. Consider expression (3) for the free energy
F of T4 nematic LC. According to the definition of the
order parameter Ui

Tr Qg = Z Uiijijk = %guz . (91)

i,d,k

The free energy (3) is a function only of Tr Q2 and the

Volterra process

Y\T/s s YT b)

d)

c)

FIG. 7. The origin of the disclination line in the tetrahedral
nematic via the Volterra process. Disclination line L is along
the threefold rotational axis C3, (normal to the plane of the
page): (a) the cross section of the tetrahedral nematic LC by
the plane L — 5, .53; (b) the displacement of the lips L — S; and
L — Sz of the cutting surface with respect to each other; (c)
the disclination line L after viscous relaxation of the structure;
(d) disclination core.

symmetry of the order parameter is higher than in the
tetrahedral case. The only constraint comes from the
last equation where u can be found by the minimization
of the free energy F. As has been mentioned in Sec.
IIT C, one can use a model of seven-componential spins
of the fixed length instead of the third rank traceless
tensor U, (Appendix). The last equation manifests this
property and determines the degeneracy space V as a six-
dimensional sphere S in the seven-dimensional space of
the components of matrix Ujji. This fact immediately
leads to topological removability of the singularities in
the core of disclination, since 74(S%) = {1} ford = 0,1, 2.
As can be seen in Fig. 7(d), this removability occurs
due to the appearance of a uniaxial phase with sixfold
rotational axis Cg, in the center of the core.

IV. CONCLUSION

The present paper is devoted to the nematic liquid
crystals with tetrahedral point symmetry groups (G) —
chiral (G = T) and nonchiral (G = Ty) tetrahedral ne-
matic LC’s which were not previously discussed. Never-
theless, they occupy a natural place among other nonuni-
axial nematic LC’s — biaxial, cubic, icosahedral. From
all nematic phases, the tetrahedral phase is the only one
that has an order parameter Q3 of the odd rank. It leads
to some peculiarities of physical properties of this phase.

The phase transition from isotropic liquid into tetra-
hedral nematic LC is of the second order via a super-
critical bifurcation, or of the first order via a subcritical
bifurcation. This behavior distinguishes tetrahedral LC
from other nematic LC’s with tensor order parameter of
even rank, where the phase transition from isotropic lig-
uid is of the first order via a transcritical bifurcation.
In the framework of the Maier-Saupe approach, it has
been shown that the transition from isotropic liquid into
nonchiral tetrahedral nematic G = Ty is always of the
second order, and the temperature T™* of this transition
has been found.

It is shown that the continuous equilibrium state of chi-
ral tetrahedral nematic LC’s manifests itself as a helical
structure of two possible kinds — uniaxial phases with
helical axes along the rotational axes Cy or C3. The be-
havior of the helical structures in the external E field is
determined due to the reorientation of the helical axes
with respect to the field direction for both kinds of spi-
rals. Besides, the applied field untwists only the C; spiral
structure, and its pitch h; increases with the increase of
FE and diverges logarithmically in the vicinity of the un-
twisting threshold field Eyp.

In the framework of the mean-field approximation, the
polarizability ps of the tetrahedral nematic LC in the
electric field behaves as p3 o< E*.

Among other problems concerned with nonuniaxial ne-
matics, a traditional one is the Fréedericksz transition
in the nonchiral tetrahedral phase. The high symme-
try of tetrahedral group 7y and a strong anchoring of
nematic bonds at the boundaries of the infinite plane-
parallel slab choose only two directions of E which pre-
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serve the Fréedericksz transition with nonzero threshold
E*. Namely, the Fréedericksz transition is possible when
E is parallel to the screw axis Cy, or to the rotational axis
C5 of the unperturbed tetrahedral phase. In both cases
the bifurcation trees have been found, and the thresh-
old fields at the first and second bifurcation points are
obtained.

A disclination core in the nonchiral tetrahedral ne-
matic is analyzed: it is free of singularities due to the
appearance of a uniaxial phase with sixfold rotational
axis Cg, in the center of the core. The point and surface
defects are unstable in the tetrahedral nematic LC.
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APPENDIX

Let us show that Tr Q2 can be represented as a sum of
seven squares of independent components Uj;,. Accord-
ing to the definition of the unitary septor

Ui11 + Uii2 + U113 = Usz1 + Uaazz + Uaas

= Uszy +Usz2 +Uszz =0. (Al)

Then,

Tr Q% = Z UijrUiji = 6 Uz + 2 (Ur12U113
i,3,k
+Uz21Uz23 + Us31Ussz)
+4 Uy + Ul + Uy

+UZhs + Uds1 + Ulsy) . (A2)

This quadratic form is positively defined and can be di-
agonalized in the canonical basis T;

~ TZ

(%)

1 Uiz
Uizs = —=7T
123 \/6 1, ( U113
Uz21 rf Ty
=A
( Ua2s ) ( Ts )’
Usa1 | _ A Ts 7
Ussz Tr
where the transformation operator Ais

R 1 _ 1
(%)

V10 6

Then, one obtains from (91) the equation of a six-
dimensional sphere S

2 . 2 32 2
Tri=> Ti= —u’.

: (43)

=1
Thus, one can use a model of seven-component spins Y

of fixed length instead of the third rank traceless tensor
Uijk~

[1] M.J. Freiser, Phys. Rev. Lett. 24, 1041 (1970).

(2] P.B. Vigman, A.L Larkin, and V.M. Filev, Zh. Eksp.
Teor. Fiz. 68, 1883 (1975) [Sov. Phys. JETP 41, 944
(1975)].

[3] L.J. Yu and A. Saupe, Phys. Rev. Lett. 45, 1000 (1980).

[4] R. Cayuela, Ph.D. thesis, Université de Bordeaux, 1986.

[5] K. Praefcke, B. Kohne, B. Giindogan, D. Demus, S. Diele,
and G. Pelzl, Mol. Cryst. Lig. Cryst. Lett. 7, 27 (1990).

[6] S. Chandrasekhar, B.K. Sadashiva, S. Ramesha, and B.S.
Srikanta, Pramana J. Phys. 27, L713 (1986).

[7] L. Malthete, L. Liebert, A.-M. Levelut, and Y. Galerne,
C.R. Acad. Sci. Ser. II 303, 1073 (1986).

[8] J. Simon and C. Sirlin, Pure Appl. Chem. 61, 1625
(1989).

[9] J. Billard, C.R. Acad. Sci. Ser. II 305, 843 (1987).

[10] R.M. Hornreich, in Aperiodicity and Order, edited by M.
Jari¢ (Academic, Boston, 1989), Vol. 3, p. 189.

] P. Kekicheff and B. Cabane, J. Phys. 48, 1571 (1987).

] A. Saupe, J. Chem. Phys. 75, 5118 (1981).

] U.D. Kini, Mol. Cryst. Liq. Cryst. 112, 265 (1984).

] L.G. Fel, Kristallografiya 34, 1222 (1989) [Sov. Phys.
Crystallogr. 34, 737 (1989)]; 35, 242 (1990) [35, 148
(1990)]; 87, 988 (1992) [37, 525 (1992)].

[15] S. Stalinga and G. Vertogen, Phys. Rev. E 49, 1483

(1994).

6] H.-R. Trebin, Phys. Rev. B 30, 4338 (1984).

7] S. Hess, Z. Naturforsch. A 35, 69 (1980).

8] D.R. Nelson and J. Toner, Phys. Rev. B 24, 363 (1981).

9] A.S. Mitus and A.Z. Patashinskii, Zh. Eksp. Teor. Fiz.

80, 1554 (1981) [Sov. Phys. JETP 53, 798 (1981)].

[20] P.J. Steinhardt, D.R. Nelson, and M. Ronchetti, Phys.
Rev. Lett. 47, 1297 (1981); Phys. Rev. B 28, 784 (1983).

[21] M.V. Jaric, Phys. Rev. Lett. 55, 607 (1985); Nucl. Phys.
B 265, 647 (1986).

[22] H.-R. Trebin, L. Longa, and B. Salzgeber, Phys. Status
Solidi B 144, 73 (1987).

[23] L.G. Fel, Krystallografiya 38, 197 (1993) [Sov. Phys.
Crystallogr. 38, 395 (1993)].

[24] D.R. Nelson, Phys. Rev. B 28, 5515 (1983).

[25] V.L. Indenbom, E.B. Loginov, and S.A. Pikin, Krystallo-
grafiya 21, 1093 (1976) [Sov. Phys. Crystallogr. 21, 635
(1976)).

[26] Yu.l. Sirotin and M.P. Shaskol’skaja, Principles of Crys-
tal Physics (Moscow, Nauka, 1975) (in Russian).

[27] J.A. Schouten, Tensor Analysis for Physicists (Claren-
don Press, Oxford, 1951).

[28] R.M. Hornreich and S. Shtrikman, Mol. Cryst. Ligq.
Cryst. 165, 183 (1988).

[29] W. Maier and A. Saupe, Z. Naturforsch. Teil A 13, 564

(1958); 14, 882 (1959); 15, 287 (1960).



52 TETRAHEDRAL SYMMETRY IN NEMATIC LIQUID CRYSTALS 717

[30] I.S. Gradshteyn and I.M. Ryzhik, Tables of Integrals, Se-
ries and Products, 5th ed. (Academic, Boston, 1994).

[31] R. Kubo, J. Phys. Soc. Jpn. 17, 1100 (1962).

[32] D.R. Nelson and R.A. Pelcovits, Phys. Rev. B 18, 9191
(1977).

[33] E.L. Kats, Usp. Fiz. Nauk 142, 99 (1984) [Sov. Phys. Usp.
27, 42 (1984)].

[34] K.G. Wilson and J. Kogut, Phys. Rep. C12, 76 (1974).

[35] L.G. Fel, Zh. Eksp. Teor. Fiz. 99, 1184 (1991) [Sov. Phys.

JETP 72, 659 (1991)].

[36] P. Saidachmetov, J. Phys. 45, 761 (1984).

[37] Yu.A. Izyumov and V.N. Syromiatnikov, Phase Transi-
tions and Crystal Symmetry (Kluwer, Dordrecht, 1990).

[38] L. Michel, Rev. Mod. Phys. 52, 617 (1980).

[39] M. Kleman, Points, Lines and Walls (Wiley, New York,
1983).

[40] LF. Lyuksyutov, Zh. Eksp. Teor. Fiz. 75, 358 (1978) [Sov.
Phys. JETP 48, 178 (1978)].



